Monday, May 9, 2011

C++ Pre-Order, In-Order, Post-Order Traversal of Trees

Leave a Comment
What is Pre-Order, In-Order, Post-Order traversal of B-Trees?


  • Pre-Order, In-Order and Post-Order are depth first search traversal methods.

  • Starting at the root of binary tree the order in which the nodes are visited define these traversal types.

  • Basically there are 3 main steps. (1) Visting the current node, (2) Traverse the left node and (3) Traverse the right nodes.
    From Wikipedia,

  • To traverse a non-empty binary tree in preorder, perform the following operations recursively at each node, starting with the root node:
    1. Visit the root.
    2. Traverse the left subtree.
    3. Traverse the right subtree.

  • To traverse a non-empty binary tree in inorder (symmetric), perform the following operations recursively at each node:
    1. Traverse the left subtree.
    2. Visit the root.
    3. Traverse the right subtree.

  • To traverse a non-empty binary tree in postorder, perform the following operations recursively at each node:
    1. Traverse the left subtree.
    2. Traverse the right subtree.
    3. Visit the root.

    #include <iostream>
    using namespace std;

    // Node class
    class Node {
    int key;
    Node* left;
    Node* right;
    public:
    Node() { key=-1; left=NULL; right=NULL; };
    void setKey(int aKey) { key = aKey; };
    void setLeft(Node* aLeft) { left = aLeft; };
    void setRight(Node* aRight) { right = aRight; };
    int Key() { return key; };
    Node* Left() { return left; };
    Node* Right() { return right; };
    };

    // Tree class
    class Tree {
    Node* root;
    public:
    Tree();
    ~Tree();
    Node* Root() { return root; };
    void addNode(int key);
    void inOrder(Node* n);
    void preOrder(Node* n);
    void postOrder(Node* n);
    private:
    void addNode(int key, Node* leaf);
    void freeNode(Node* leaf);
    };

    // Constructor
    Tree::Tree() {
    root = NULL;
    }

    // Destructor
    Tree::~Tree() {
    freeNode(root);
    }

    // Free the node
    void Tree::freeNode(Node* leaf)
    {
    if ( leaf != NULL )
    {
    freeNode(leaf->Left());
    freeNode(leaf->Right());
    delete leaf;
    }
    }

    // Add a node
    void Tree::addNode(int key) {
    // No elements. Add the root
    if ( root == NULL ) {
    cout << "add root node ... " << key << endl;
    Node* n = new Node();
    n->setKey(key);
    root = n;
    }
    else {
    cout << "add other node ... " << key << endl;
    addNode(key, root);
    }
    }

    // Add a node (private)
    void Tree::addNode(int key, Node* leaf) {
    if ( key <= leaf->Key() ) {
    if ( leaf->Left() != NULL )
    addNode(key, leaf->Left());
    else {
    Node* n = new Node();
    n->setKey(key);
    leaf->setLeft(n);
    }
    }
    else {
    if ( leaf->Right() != NULL )
    addNode(key, leaf->Right());
    else {
    Node* n = new Node();
    n->setKey(key);
    leaf->setRight(n);
    }
    }
    }

    // Print the tree in-order
    // Traverse the left sub-tree, root, right sub-tree
    void Tree::inOrder(Node* n) {
    if ( n ) {
    inOrder(n->Left());
    cout << n->Key() << " ";
    inOrder(n->Right());
    }
    }

    // Print the tree pre-order
    // Traverse the root, left sub-tree, right sub-tree
    void Tree::preOrder(Node* n) {
    if ( n ) {
    cout << n->Key() << " ";
    preOrder(n->Left());
    preOrder(n->Right());
    }
    }

    // Print the tree post-order
    // Traverse left sub-tree, right sub-tree, root
    void Tree::postOrder(Node* n) {
    if ( n ) {
    postOrder(n->Left());
    postOrder(n->Right());
    cout << n->Key() << " ";
    }
    }


    // Test main program
    int main() {
    Tree* tree = new Tree();
    tree->addNode(30);
    tree->addNode(10);
    tree->addNode(20);
    tree->addNode(40);
    tree->addNode(50);

    cout << "In order traversal" << endl;
    tree->inOrder(tree->Root());
    cout << endl;

    cout << "Pre order traversal" << endl;
    tree->preOrder(tree->Root());
    cout << endl;

    cout << "Post order traversal" << endl;
    tree->postOrder(tree->Root());
    cout << endl;

    delete tree;
    return 0;
    }
    .

    OUTPUT:-
    add root node ... 30
    add other node ... 10
    add other node ... 20
    add other node ... 40
    add other node ... 50
    In order traversal
    10 20 30 40 50
    Pre order traversal
    30 10 20 40 50
    Post order traversal
    20 10 50 40 30
If You Enjoyed This, Take 5 Seconds To Share It

0 comments:

Post a Comment